
IJDCST @Nov-Dec, Issue- V-3, I-1, SW-76
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

184 www.ijdcst.com

Metamorphic Relations for Program Testing, Debugging

using an Enhancement Method

M.Vijaya Kumar1 , D.HariKrishna2 , Dr. K. Rama Krishnaiah 3

1 Dept. of CSE, Nova College of Engineerng & Technology,Vijayawada,AP,India.

2Assistant Professor, Nova College of Engineerng & Technology,Vijayawada,AP,India.

3 Professor, Nova College of Engineerng & Technology,Vijayawada,AP,India.

ABSTRACT: A normally utilized methodology is

to actualize distinctive plans at different stages for a

powerful program. In this paper, we shows an

improved system for project testing, and debugging

that uses metamorphic relations(MR).for program

accuracy the strategy guarantees that a system fulfills

chose program properties(metamorphic relations) for

a scope of information spaces. For project testing the

strategy itself is a computerized typical testing system

that is utilized to test chose program ways for taking

care of unobtrusive blames in programming testing,

for example, the missing way slips. In proposed

framework, we supplant the backtracking calculation

with "SYNERGY" algorithm that joins testing and

demonstrating to check program properties. At last

the strategy likewise upholds programmed debugging

through the recognizable proof of stipulations for

disappointment creating inputs. The proposed

framework is perfect for medium and vast scale

applications.

Keywords: Metamorphic, SYNERGY, Testing and

Debugging

I. INTRODUCTION

Program accuracy has dependably been a

discriminating issue for both analysts and experts.

The previous decades have demonstrated that the

utilization of formal check (i.e., system

demonstrating) to genuine applications has been

exceptionally restricted because of the troubles in

evidences and computerization. Project testing,

hence, remains the most well known means embraced

by specialists. By and by, testing has two major

impediments. First and foremost, the utilization of

experiments can't promise program accuracy on

untested inputs. As it were, trying can't demonstrate

the unlucky deficiency of shortcomings much of the

time. Furthermore, in a few circumstances, it is

unimaginable or basically excessively hard to choose

whether the system yields on experiments are right.

This is known as the prophet issue. As of late new

programming testing system, to be specific

metamorphic testing, has been proposed to assuage

the prophet issue.

Changeable Testing is a computerized testing

technique that utilizes expected properties of the

target capacities to test projects without human

contribution. These properties are called metamorphic

relations (MR). The thought of checking the normal

properties of target frameworks without being limited

to character relations has been utilized in changeable

testing and the testing of equality and non-equality of

articles.

Utilizing the idea of metamorphic relations, we

choose essential properties for the target program. At

that point we perform typical executions. This is on

account of the yield of a typical execution is more

instructive than that of executing a cement info, as an

IJDCST @Nov-Dec, Issue- V-3, I-1, SW-75
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

186 www.ijdcst.com

issue data speaks to more than one component of the

information area. We will utilize the term typical

executions to allude to the executions of chose ways

with chose typical inputs, and the term worldwide

typical assessment for the executions of all

conceivable ways of the project with typical inputs

covering the whole include space. For projects that

are excessively intricate for worldwide image

assessment or imperative solvers, our methodology

can at present be connected as an issue testing

methodology.

Fig.1: Metamorphic test architecture.

In existing framework, Individual methodologies are

utilized for project demonstrating, testing and

debugging. There is no Integrated Model for bringing

together all the three. Later, an Integrated Method

called semi demonstrating is utilized for Program

Correctness, Testing, and Debugging utilizing

Metamorphic Relations (MR). Semi Proving uses

four Mrs that are very not quite the same as each

other with a perspective to recognize different flaws,

since it is profoundly farfetched for a solitary MR to

identify all the deficiencies. For Testing, Semi

Proving uses a backtracking algorithm of Pathfinder

model checker to cross the typical execution tree as

opposed to beginning without any preparation for

each typical execution. The backtracking calculation

is not a helpful methodology for medium and huge

scale applications.

In this paper, we demonstrates an enhanced method

for program testing, and debugging that uses

metamorphic relations(MR).For program correctness

the method ensures that a program satisfies selected

program properties(metamorphic relations) for a

range of input domains. For testing, we replace the

backtracking algorithm with “SYNERGY” algorithm

that combines testing and proving to check program

properties. In our approach, Synergy, a testing

method is combined with Metamorphic Relations the

system is ideal for medium and large scale

applications. SYNERGY is different from that of

other testing methods. It does not attempt to traverse

the execution tree; instead, it attempts to cover all

abstract states (equivalence classes.) It can be more

efficient in constructing proofs of correctness for

programs with the “diamond” structure of if-then-else

statements. Finally the method also supports

automatic debugging through the identification of

constraints for failure-causing inputs.

II. Related Work

A strategy has been created by Yorsh et al. to join

testing, deliberation, and hypothesis demonstrating.

Utilizing this technique, system states gathered from

executions of cement experiments are summed up by

method for reflections. At that point, a hypothesis

prover will check the summed up set of states against

a scope basis and against certain security properties.

At the point when the check is effective, the

wellbeing properties are demonstrated. Yorsh et al's.

system "is situated towards discovering an evidence

as opposed to recognizing true blunders," and "does

not recognize a false mistake and a genuine slip."

Zeller and Hildebrandt proposed a Delta Debugging

calculation that changes a disappointment bringing

about information into an insignificant structure that

IJDCST @Nov-Dec, Issue- V-3, I-1, SW-75
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

187 www.ijdcst.com

can at present fizzle the project. This is carried out by

persistently narrowing down the distinction between

disappointment creating and non-disappointment

bringing about inputs. Zeller further created the Delta

Debugging system by looking at "what's going ahead

inside the project" amid the execution. He considered

the fizzled execution as an issue of system states, and

just piece of the variables and values in a percentage

of the states are important to the disappointment. He

proposed disengaging these important variables and

values by ceaselessly narrowing the distinction in

system states in fruitful and fizzled executions.

He and Gupta acquainted a methodology with both

finding and adjusting defective proclamations in a

project under test. The methodology joins thoughts

from accuracy demonstrating and programming

testing to find an imaginable mistaken proclamation

and afterward right it. It expect that a right

determination of the system under test is given as far

as preconditions and post conditions. It likewise

expect that stand out articulation in the project under

test is at shortcoming. Utilizing the idea of way based

weakest precondition, the thoughts of a theorized

system state and a real program state at each point

along the disappointment way (execution follow) are

characterized. He and Gupta's calculation crosses the

disappointment way and contrasts the states at each

one point with identify proof for a conceivable

broken proclamation. Such "proof" will rise if a

predicate speaking to the real program states is less

prohibitive than the predicate speaking to the

Hypothesized project states. The calculation then

creates an alteration to the probable broken

explanation. The altered system is then tried utilizing

all current experiments.

III INTEGRATED METHOD

OVERVIEW

Let p be the project under test, t be the starting

effective experiment, R be a MR, and t′ be the catch

up experiment produced as indicated by R. For

simplicity of presentation and comprehension, let us

focus on Mrs that is personality relations. For non-

character relations, the examination will be

comparative. Thus, it is the connection "p(t) = p(t′)"

that is weighed in MT. Our point is to choose such a

MR, to the point that has a higher opportunity to

cause p(t) ≠ p(t′). We propose the accompanying

speculation:

For a defective system p and a couple of changeable

experiments (t, t′), as a rule the more the execution of

p(t′) contrasts from the execution of p(t), the more

probable it is that their yields are not equivalent.

We have not expressly characterized the idea of

"distinction between two executions". This idea

covers all parts of project executions, including the

ways navigated, arrangement of the announcements

worked out, succession of diverse qualities appointed

to variables, and so forth. Taking into account

Hypothesis, our MR choice technique is to choose

such Mrs that can make the two executions as

distinctive as would be prudent. For project p(t), the

info t is a tuple including one or more parameters,

i.e., t = (x1, x2, . . . , xn), where n ≥ 1. Normally,

diverse xi's (1 ≤ i ≤ n) assume distinctive parts in the

execution and, henceforth, they have diverse impact

on the general execution stream (i.e., ways executed,

variable qualities, cycle times, and so on.) Hence, we

propose selecting those Mrs that can change the

estimations of the basic parameters as extraordinarily

as could be expected under the circumstances. A

IJDCST @Nov-Dec, Issue- V-3, I-1, SW-75
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

188 www.ijdcst.com

"discriminating parameter" is such a xi in t, to the

point that assumes the most essential part in

controlling how the system is to be executed. The

catch up experiment t′ hence created will, in this way,

constrain an altogether different execution.

We represented how to demonstrate that the project is

right regarding a chose changeable connection. In

circumstances where the accuracy of a few yields can

be chosen, for example, uncommon worth cases, we

can extrapolate from the rightness for tried inputs to

the rightness for related untested inputs. Let us, for

example, test the project Med with a particular typical

experiment (x, y, z) such that x ≤ z ≤ y. The yield is z.

We can, obviously, effectively check that z is a right

yield. Henceforth, the project breezes through this

particular test. We can extrapolate that the yields of

the project Med are right for all different inputs as

takes after: Suppose I = (a, b, c) is any triple of whole

numbers. Given i a chance to) (= (a′, b′, c′) be a stage

of I such that a′ ≤ c′ ≤ b′. As per the aftereffect of the

typical testing above, Med (a′, b′, c′) = average (a′, b′,

c′). The way that (a′, b′, c′) is essentially a change of

(a, b, c) intimates that average (a′, b′, c′) = average (a,

b, c). Consequently, Med (a′, b′, c′) = average (a, b,

c). Then again, it has been demonstrated that Med (a′,

b′, c′) = Med (a, b, c). In this manner, Med (a, b, c) =

average (a, b, c). Thusly, we have demonstrated that

the yields of Med (a, b, c) are correct for any input. In

other words, the correctness is extrapolated from

tested symbolic inputs to untested symbolic inputs.

In routine programming testing (counting

metamorphic testing), solid disappointment creating

inputs are distinguished yet not the interrelationships

among them. In our methodology, backings

debugging by giving express depictions of the

interrelationships among changeable disappointment

bringing about inputs through MFCC. Contrasted and

cement disappointment bringing about inputs, such

interrelationships contain more data about the

deformities. Contrasted and changeable testing, our

system has an alternate preference notwithstanding its

backing of debugging: It has a higher flaw

identification ability.

"Testing is concerned with issue recognition, while

placing and diagnosing flaws fall under the rubric of

debugging. "Spotting the imperfections" ought not

just be deciphered as the distinguishing proof of

flawed explanations in a project. We have actualized

confirmation and debugging framework with an

alternate centering. Our framework produces

demonstrative data on the reason impact affix that

prompts a disappointment. We characterize a

metamorphic preserving condition (MPC) as an issue

under which a system fulfills an endorsed

metamorphic connection. When we recognize a

MFCC, a relating MPC can likewise be distinguished

in the meantime. When the trigger is recognized, the

debugger will further stand up in comparison the

execution follows, way conditions, etc, and after that

report the distinctions as an issue impact fasten that

prompts the disappointment.

In our verification system, the source code of any

program under test is instrumented using a program

instrument or prior to compilation, so that an

execution trace can be collected. When a violation of

a metamorphic relation occurs, a failure report will be

generated in two steps. First, details of the initial and

follow-up executions are recorded. Then, diagnostic

details are added. When there are a large number of

paths to verify, the efficiency of symbolic-execution-

based approaches is also a concern. There are,

however, algorithms and tools that tackle such tasks

more efficiently. The Java PathFinder model checker,

for example, uses a backtracking algorithm to

IJDCST @Nov-Dec, Issue- V-3, I-1, SW-75
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

189 www.ijdcst.com

traverse the symbolic execution tree instead of

starting from scratch for every symbolic execution.

 To achieve higher scalability for large

software applications, in our approach we replace the

backtracking algorithm with “SYNERGY” algorithm

that combines testing and proving to check program

properties. It unifies the ideas of counter example

guided model checking, directed testing , and

partition refinement.

SYNERGY is different from that of other

testing methods. It does not attempt to traverse the

execution tree, instead, it attempts to cover all

abstract states (equivalence classes.) It can be more

efficient in constructing proofs of correctness for

programs with the “diamond” structure of if-then-else

statements.

IV OVERVIEW ON SYNERGY

We present a new verification algorithm, called

Synergy, which searches simultaneously for bugs and

proof, and while doing so, tries to put the information

obtained in one search to the best possible use in the

other search. The search for bugs is guided by the

proof under construction, and the search for proof is

guided by the program executions that have already

been performed.

Synergy keeps up two information structures. For the

under estimated (solid) investigation, Synergy gathers

the test runs it executes as an issue F. Every way in

the woods F relates to a cement execution of the

system. The timberland F is become by performing

new tests. When a blunder area is added to F, a true

slip has been found. For the overestimated

(conceptual) examination, Synergy keeps up a

limited, social reflection An of the system. Each one

condition of An is an equivalence class of cement

system states, and there is a move from unique

express an excessively theoretical state b if some

solid state in a has a move to some solid state in b. At

first, A contains one dynamic state for every system

area.

Synergy grows develops the backwoods F by taking a

gander at the part An, and it refines A by taking a

gander at F. At whatever point there is an (unique)

blunder way in A, Synergy picks a lapse way τerr in

A which has a prefix τ such that (1) τ compares to a

(cement) way in F, and (2) no theoretical state in τerr

after the prefix τ is gone by in F. Such a "requested"

way τerr dependably exists. Collaboration now tries

to add to F another test which takes after the

requested way τerr for no less than one move past the

prefix τ . We utilize coordinated testing to check if

such a "suitable" test exists. In the event that a

suitable test exists, then it has a decent risk of hitting

the slip if the mistake is in fact reachable along the

requested way. Also regardless of the possibility that

the suitable test does not hit the blunder, it will show

a more extended doable prefix of the requested way.

Then again, if a suitable test does not exist, then as

opposed to developing the woods F, Synergy refines

the part A by evacuating the first conceptual move

after the prefix τ along the requested way τ error. At

that point Synergy proceeds by picking another

requested way, until either F discovers a genuine

system lapse or A gives a confirmation of project.

V SYNERGY VERIFICATION

The algorithm Synergy takes as inputs (1) a program

P = <Σ, σ, →>, and (2) a property ψ where Σ is a set

of states, σ is initial state and is transaction

relation. It can produce three types of results:

1. It may output “fail” together with a test generating

an error trace of P to ψ.

IJDCST @Nov-Dec, Issue- V-3, I-1, SW-75
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

190 www.ijdcst.com

2. It may output “pass” together with a finite-indexed

partition Σ≈ proving that P cannot reach ψ.

3. It may not terminate.

It maintains two core data structures: (1) a

finite forest F of states, where for every state s Є F,

either s Є σ or parent (s) Є F is a concrete

predecessor of s (that is, parent (s) →s); and (2) a

finite-indexed partition Σ≈ of the state space Σ.

At first, F is void, and Σ≈ is the starting allotment

with three districts, to be specific, the introductory

states σ, the slip states ψ, and all different states. In

every emphasis of the fundamental circle, the

calculation either stretches the backwoods F to

incorporate more reachable states, or refines the

segment Σ≈. Theoretical blunder follows are utilized

to run experiment era and the non-presence of

specific sorts of experiments is utilized to guide

allotment refinement. In every cycle of the circle, the

calculation first verifies whether it has effectively

discovered an experiment to the mistake district. This

is checked by searching for a district S such that S ∩

F =ø and S ⊆ ψ . All things considered, the

calculation picks a state s ∈ S ∩ F and calls the

assistant capacity Testfromwitness to process an

experiment (data vector) that creates a blunder

follow. Instinctively, Testfromwitness lives up to

expectations by progressively finding the guardian

until it discovers a foundation of the timberland F.

Formally, for a state s ∈ F, the capacity call

Testfromwitness(s) gives back where its due

succession s0 , s1, . . . , sn such that sn = s, and

guardian (si) = si−1 for every one of the 0 < i ≤ n, and

guardian (s0) = €. The beginning state s0 gives the

craved experiment.

In the event that it is not ready to discover an

experiment prompting the slip, the calculation checks

if the current segment Σ≈ gives a confirmation that P

can't reach ψ. It does this by first building the

dynamic project P≈ utilizing the assistant capacity

Createabstractprogram . Given a parcel Σ≈, the

capacity Createabstractprogram(p,σ≈) gives back

where its due project P≈ = <σ≈, σ≈,→≈>. The

following step is to call to the helper capacity

Getabstracttrace keeping in mind the end goal to scan

for a conceptual mistake follow. In the event that

there is no unique lapse follow, then Getabstracttrace

furnishes a proportional payback follow €. All things

considered, the calculation returns "pass" with the

current parcel Σ≈. Something else, Getabstracttrace

gives back a dynamic follow s0 , s1, . . . , sn such that

Sn ⊆ ψ. The next step is to convert this trace into an

ordered abstract trace.

The abstract trace s0 , s1, . . . , sn is ordered if the

following two conditions hold:

1. There exists a frontier k def = Frontier(s0 , s1, . . . ,

sn) such that (a) 0 ≤ k ≤ n, and (b) Si ∩F =ø for all k ≤

i ≤ n, and (c) Sj ∩ F = ø for all 0 ≤ j < k.

2. There exists a state s ∈ Sk−1 ∩ F such that Si =

Region(parentk−1−i(s)) for all 0 ≤ i < k, where the

abstraction function Region maps each state s ∈ Σ to

the region S ∈ Σ≈ with s ∈ S.

We note that whenever there is an abstract

error trace, then there must exist an ordered abstract

error trace. The auxiliary function

GetOrderedAbstractTrace converts an arbitrary

abstract trace τ into an ordered abstract trace τerr.

Intuitively, it works by finding the latest region in the

trace that intersects with the forest F, choosing a state

in this intersection, and following the parent pointers

from the chosen state. The function

GetOrderedAbstractTrace returns a pair <τerr, k>,

IJDCST @Nov-Dec, Issue- V-3, I-1, SW-75
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

191 www.ijdcst.com

where τerr is an ordered abstract error trace and k =

Frontier(τerr).

 The algorithm now tries to extend the forest

F along the ordered abstract error trace τerr. We

define suitable tests in two steps. First we define F-

extensions, which are sequences that can be added to

F while still maintaining the invariant that F is a

forest. A finite sequence s0 , s1, . . . , sn m of states is

an F-extension if (1) s0 ∈ σ, and (2) si→si+1 for all 0

≤ i < m, and (3) there exists k such that (a) 0 ≤ k < m

and (b) si ∈ F for all 0 ≤ i < k and (c) sj ∈ F for all k ≤

j ≤ m. Given an abstract trace τerr = S0 , S1, . . . , Sn

with k = Frontier(τerr), and the forest F, a sequence

of states is suitable if it is (1) an F-extension and (2)

follows the abstract trace τerr at least for k steps.

Formally, the auxiliary function

GenSuitableTest(τerr, F) takes as inputs an ordered

abstract trace τerr = S0 , S1, . . . ,Sn and the forest F,

and either returns an F-extension t = s0 , s1, . . . , sm

such that (a) m ≥ Frontier(τerr) and (b) si ∈ Si for all

0 ≤ i ≤ Frontier(τerr), or returns € if no such suitable

sequence exists.

If we succeed in finding such a suitable test case, we

simply add it to the forest F, and continue. If no

suitable test is found, then we know that there is no

concrete program execution corresponding to the

abstract trace S0 , S1, . . . , Sk. However, we already

have a concrete execution along the prefix S0 , S1, . .

. , Sk−1, because Sk−1∩F= ø. Thus, we split the

region Sk−1 using the preimage operator Pre(Sk) = {s

∈ Σ | ∃s' ∈ Sk. s → s}, and thus eliminate the

spurious (infeasible) abstract error trace from the

abstract program. The call to the auxiliary function

RefineWithGeneralization has been commented out.

This call is needed to help Synergy terminate on

certain programs.

VI Experimental Results

This section will illustrate our experimental results on

metamorphic testing for sparse matrix multiplication

programs, which has been performed automatically

with MTest.

Metamorphic testing with special test cases

The special test set consists of 8 test cases,

derived from atomic properties mentioned in Section

1.

Table 1 Test verdicts report by special case testing

and metamorphic testing with special test cases.

Table 4 reports the mutation score and fault detection

ratio of special case testing in Column 2, and

metamorphic testing with each metamorphic relation

MR
i
, in Columns 3 to 11.

IJDCST @Nov-Dec, Issue- V-3, I-1, SW-75
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

192 www.ijdcst.com

Table 2 Mutation score and fault detection ratio of special

case testing and metamorphic testing.

Based on the above data, the following

conclusions can be drawn:

1. Metamorphic testing with a single metamorphic

relation, as well as with special test cases, may not

outperform special case testing. For sparse matrix

multiplication, MR
1
, MR

8
and MR

9
seem better than

other metamorphic relations, among which MR
3
is the

worst one.

Fig.2: FD(T
mr

) with increasing number of random test

cases and

minimum order of a random matrix: (i) D
min

=2, (ii)

D
min

=6, (iii) D
min

=18.

CONCLUSION:

We have presented a integrated system for

demonstrating, testing, and debugging. Firstly, it

demonstrates that the system fulfills chose program

properties (that is, changeable relations) all through

the whole include area or for a subset of it. For

testing, we supplant the backtracking calculation with

"Cooperative energy" calculation that consolidates

testing and demonstrating to check program

properties. In our methodology, Synergy, a testing

system is consolidated with Metamorphic Relations

the framework is perfect for medium and extensive

scale applications. Collaboration is not the same as

that of other testing systems. It doesn't endeavor to

navigate the execution tree; rather, it endeavors to

cover all theoretical states (proportionality classes.) It

can be more proficient in developing verifications of

rightness for projects with the "diamond" structure of

if-then-else explanations. At long last the strategy

likewise upholds programmed debugging through the

ID of imperatives for disappointment creating inputs.

It is essentially intriguing, in light of the fact that it

consolidates the capacity of different instruments to

handle an extensive number of project ways utilizing

a little number of dynamic states and dodge

unnecessary refinements through cement execution.

REFFERENCES:

[1] Java PathFinder Home Page. http://javapathfinder.

sourceforge.net.

[2] T.Y. Chen, J. Feng, and T.H. Tse, “Metamorphic

testing of programs on partial differential equations: a

case study,” Proceedings of the 26th Annual

International Computer Software and Applications

Conference (COMP- SAC 2002), pp. 327–333. Los

Alamitos, CA: IEEE Computer Society Press, 2002.

[3] H. Agrawal, J.R. Horgan, S. London, and W. E.

Wong, “Fault localization using execution slices and

dataflow tests,” Proceedings of the 6th International

Symposium on Software Reliability Engineering

(ISSRE ’95), pp. 143– 151. Los Alamitos, CA: IEEE

Computer Society Press, 1995.

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M.D. Ernst, “Finding bugs in dynamic

web applications,” Proceedings of the 2008 ACM

SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2008), pp. 261–272.

New York, NY: ACM Press, 2008.

[5] L. Baresi and M. Young, “Test oracles,”

Technical Report

CIS-TR01-02, Department of Computer and

Information Science, University of Oregon, Eugene,

OR, 2001.

IJDCST @Nov-Dec, Issue- V-3, I-1, SW-75
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

193 www.ijdcst.com

[6] T. Ball and S.K. Rajamani. Automatically

validating temporal safety properties of interfaces. In

Model Checking of Software (SPIN), LNCS 2057, pp.

103–122. Springer, 2001.

[7] E.M. Clarke, O. Grumberg, D. Peled. Model

Checking. MIT Press, 1999.

[8] P. Godefroid, N. Klarlund, K. Sen. Dart: Directed

automated random testing. In Programming

Language Design and Implementation, pp. 213–223.

ACM, 2005.

[9] M. Blum, M. Luby, and R. Rubinfeld, “Selftesting

/ correcting with applications to numerical problems,”

Proceedings of the 22nd Annual ACM Symposium on

Theory of Computing (STOC ’90), pp. 73–83. New

York, NY: ACM Press, 1990. Also Journal of

Computer and System Sciences, vol. 47, no. 3, pp.

549–595, 1993.

[10] B. Burgstaller, B. Scholz, and J. Blieberger,

Symbolic Analysis of Imperative Programming

Languages, Lecture Notes in Computer Science, vol.

4228, pp. 172–194. Berlin, Germany: Springer, 2006.

About Authors:

I am M.Vijaya Kumar

pursuing

my Mtech from Nova college of

Engineering & Technology, My

interest are research in data

mining & Software

Engineering.

Mr. Hari Krishna.Deevi is a

qualified persion Holding

M.Sc(CSE) & M.Tech

Degree in CSE from Acharya

Nagarjuna university, He is

an Outstanding Administrator

& Coordinator. He is working as an Assistant

Professor in NOVA College of Engineering

Technology .He guided students in doing IBM

projects at NOVA ENGINEERING College. Who

has Published 10 research Papers in various

international Journals and workshops with his

incredible work to gain the knowledge for feature

errands.

Dr. K. Rama

Krishnaiah is a highly

qualified person, an efficient

and eminent academician. He is

an outstanding administrator; a

prolific researcher published 33

research papers in various International Journals and

a forward looking educationist. He worked in

prestigious K L University for 11.5 years and he

contributed his service for NBA accreditation in May

2004, Aug 2007 with ‘record rating’, ISO 9001:2000

in 2004, Autonomous status in 2006, NAAC

accreditation of UGC in 2008 and University status in

2009. Later on he worked as Principal at Nova

College of Engineering and Technology, Vijayawada

for a period of 3.5Yrs. He took charge as the

Principal, NVR College of Engineering and

Technology, Tenali in May 2014.

